C++二叉树遍历
图 7-11 前序遍历的递归过程从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
层序遍历
如图 7-9 所示,「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
层序遍历本质上属于「广度优先遍历 breadth-first traversal」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
图 7-9 二叉树的层序遍历
1. 代码实现
广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。
binary_tree_bfs.cpp
/* 层序遍历 */
vector<int> levelOrder(TreeNode *root) {
// 初始化队列,加入根节点
queue<TreeNode *> queue;
queue.push(root);
// 初始化一个列表,用于保存遍历序列
vector<int> vec;
while (!queue.empty()) {
TreeNode *node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存节点值
if (node->left != nullptr)
queue.push(node->left); // 左子节点入队
if (node->right != nullptr)
queue.push(node->right); // 右子节点入队
}
return vec;
}
2. 复杂度分析
- 时间复杂度 O(n) :所有节点被访问一次,使用 O(n) 时间,其中 n 为节点数量。
- 空间复杂度 O(n) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n+1)/2 个节点,占用 O(n) 空间。
前序、中序、后序遍历
相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
图 7-10 展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
图 7-10 二叉搜索树的前、中、后序遍历
代码实现
深度优先搜索通常基于递归实现:
binary_tree_dfs.cpp
/* 前序遍历 */
void preOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:根节点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 中序遍历 */
void inOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 根节点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 后序遍历 */
void postOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 右子树 -> 根节点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
Note
深度优先搜索也可以基于迭代实现,有兴趣的同学可以自行研究。
图 7-11 展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。
- “递”表示开启新方法,程序在此过程中访问下一个节点。
- “归”表示函数返回,代表当前节点已经访问完毕。
图 7-11 前序遍历的递归过程
2. 复杂度分析
- 时间复杂度 O(n) :所有节点被访问一次,使用 O(n) 时间。
- 空间复杂度 O(n) :在最差情况下,即树退化为链表时,递归深度达到 n ,系统占用 O(n) 栈帧空间。
更多建议: