C++堆
「堆 heap」是一种满足特定条件的完全二叉树,主要可分为图 8-1 所示的两种类型。
- 「大顶堆 max heap」:任意节点的值 ≥ 其子节点的值。
- 「小顶堆 min heap」:任意节点的值 ≤ 其子节点的值。
图 8-1 小顶堆与大顶堆
堆作为完全二叉树的一个特例,具有以下特性。
- 最底层节点靠左填充,其他层的节点都被填满。
- 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
- 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。
堆常用操作
需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。
实际上,堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一使用“堆“来命名。
堆的常用操作见表 8-1 ,方法名需要根据编程语言来确定。
表 8-1 堆的操作效率
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入堆 |
|
pop() | 堆顶元素出堆 |
|
peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) |
|
size() | 获取堆的元素数量 |
|
isEmpty() | 判断堆是否为空 |
|
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
Tip
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过修改 Comparator 来实现“小顶堆”与“大顶堆”之间的转换。
heap.cpp
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;
/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);
/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();
/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
堆的实现
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 ≥ 替换为 ≤ )。感兴趣的读者可以自行实现。
1. 堆的存储与表示
我们在二叉树章节中学习到,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,我们将采用数组来存储堆。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现。
如图 8-2 所示,给定索引 i ,其左子节点索引为 2i+1 ,右子节点索引为 2i+2 ,父节点索引为 (i−1)/2(向下取整)。当索引越界时,表示空节点或节点不存在。
图 8-2 堆的表示与存储
我们可以将索引映射公式封装成函数,方便后续使用。
my_heap.cpp
/* 获取左子节点索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取右子节点索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取父节点索引 */
int parent(int i) {
return (i - 1) / 2; // 向下取整
}
2. 访问堆顶元素
堆顶元素即为二叉树的根节点,也就是列表的首个元素。
my_heap.cpp
/* 访问堆顶元素 */
int peek() {
return maxHeap[0];
}
3. 元素入堆
给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,从底至顶执行堆化。如图 8-3 所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
图 8-3 元素入堆步骤
设节点总数为 n ,则树的高度为
my_heap.cpp
/* 元素入堆 */
void push(int val) {
// 添加节点
maxHeap.push_back(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取节点 i 的父节点
int p = parent(i);
// 当“越过根节点”或“节点无须修复”时,结束堆化
if (p < 0 || maxHeap[i] <= maxHeap[p])
break;
// 交换两节点
swap(maxHeap[i], maxHeap[p]);
// 循环向上堆化
i = p;
}
}
4. 堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
- 交换堆顶元素与堆底元素(即交换根节点与最右叶节点)。
- 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素)。
- 从根节点开始,从顶至底执行堆化。
如图 8-4 所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
图 8-4 堆顶元素出堆步骤
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(logn) 。
my_heap.cpp
/* 元素出堆 */
void pop() {
// 判空处理
if (isEmpty()) {
throw out_of_range("堆为空");
}
// 交换根节点与最右叶节点(即交换首元素与尾元素)
swap(maxHeap[0], maxHeap[size() - 1]);
// 删除节点
maxHeap.pop_back();
// 从顶至底堆化
siftDown(0);
}
/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = left(i), r = right(i), ma = i;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (l < size() && maxHeap[l] > maxHeap[ma])
ma = l;
if (r < size() && maxHeap[r] > maxHeap[ma])
ma = r;
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
if (ma == i)
break;
swap(maxHeap[i], maxHeap[ma]);
// 循环向下堆化
i = ma;
}
}
堆常见应用
- 优先队列:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 O(logn) ,而建队操作为 O(n) ,这些操作都非常高效。
- 堆排序:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。
- 获取最大的 k 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。
更多建议: