C++二分查找

2023-09-20 09:20 更新

「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。

Question

给定一个长度为 n 的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 −1 。

二分查找示例数据

图 10-1   二分查找示例数据

如图 10-2 所示,我们先初始化指针 =0 和 =1 ,分别指向数组首元素和尾元素,代表搜索区间 [0,1] 。请注意,中括号表示闭区间,其包含边界值本身。

接下来,循环执行以下两步。

  1. 计算中点索引 m=⌊(i+j)/2⌋ ,其中 ⌊⌋ 表示向下取整操作。
  2. 判断 nums[m] 和 target 的大小关系,分为以下三种情况。

     a.  当 nums[m] < target 时,说明 target 在区间 [m+1,j] 中,因此执行 i=m+1 。

     b.  当 nums[m] > target 时,说明 target 在区间 [i,m−1] 中,因此执行 j=m−1 。

     c.  当 nums[m] = target 时,说明找到 target ,因此返回索引 m 。

若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 −1 。

二分查找流程

binary_search_step2

binary_search_step3

binary_search_step4

binary_search_step5

binary_search_step6

binary_search_step7

图 10-2   二分查找流程

值得注意的是,由于 i 和 j 都是 int 类型,因此 i+j 可能会超出 int 类型的取值范围。为了避免大数越界,我们通常采用公式 m=⌊i+(j−i)/2⌋ 来计算中点。

binary_search.cpp

/* 二分查找(双闭区间) */
int binarySearch(vector<int> &nums, int target) {
    // 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
    int i = 0, j = nums.size() - 1;
    // 循环,当搜索区间为空时跳出(当 i > j 时为空)
    while (i <= j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target)    // 此情况说明 target 在区间 [m+1, j] 中
            i = m + 1;
        else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
            j = m - 1;
        else // 找到目标元素,返回其索引
            return m;
    }
    // 未找到目标元素,返回 -1
    return -1;
}

时间复杂度 O(log⁡n) :在二分循环中,区间每轮缩小一半,循环次数为 log2⁡n 。

空间复杂度 O(1) :指针 i 和 j 使用常数大小空间。

binary_search.cpp

/* 二分查找(左闭右开) */
int binarySearchLCRO(vector<int> &nums, int target) {
    // 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
    int i = 0, j = nums.size();
    // 循环,当搜索区间为空时跳出(当 i = j 时为空)
    while (i < j) {
        int m = i + (j - i) / 2; // 计算中点索引 m
        if (nums[m] < target)    // 此情况说明 target 在区间 [m+1, j) 中
            i = m + 1;
        else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
            j = m;
        else // 找到目标元素,返回其索引
            return m;
    }
    // 未找到目标元素,返回 -1
    return -1;
}

如图 10-3 所示,在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。

由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 i 和 j 缩小区间操作也是对称的。这样更不容易出错,因此一般建议采用“双闭区间”的写法

两种区间定义

图 10-3   两种区间定义

优点与局限性

二分查找在时间和空间方面都有较好的性能。

  • 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 n=2^20 时,线性查找需要 2^20=1048576 轮循环,而二分查找仅需 log2 ⁡2^20=20 轮循环。
  • 二分查找无须额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。

然而,二分查找并非适用于所有情况,主要有以下原因。

  • 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 O(nlog⁡n) ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 O(n) ,也是非常昂贵的。
  • 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
  • 小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 n 较小时,线性查找反而比二分查找更快。


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号