C++全排列问题
全排列问题是回溯算法的一个典型应用。它的定义是在给定一个集合(如一个数组或字符串)的情况下,找出这个集合中元素的所有可能的排列。
表 13-2 列举了几个示例数据,包括输入数组和对应的所有排列。
表 13-2 数组与链表的效率对比
输入数组 | 所有排列 |
---|---|
无相等元素的情况
Question
输入一个整数数组,数组中不包含重复元素,返回所有可能的排列。
从回溯算法的角度看,我们可以把生成排列的过程想象成一系列选择的结果。假设输入数组为
从回溯代码的角度看,候选集合 choices
是输入数组中的所有元素,状态 state
是直至目前已被选择的元素。请注意,每个元素只允许被选择一次,因此 state
中的所有元素都应该是唯一的。
如图 13-5 所示,我们可以将搜索过程展开成一个递归树,树中的每个节点代表当前状态 state
。从根节点开始,经过三轮选择后到达叶节点,每个叶节点都对应一个排列。
图 13-5 全排列的递归树
1. 重复选择剪枝
为了实现每个元素只被选择一次,我们考虑引入一个布尔型数组 selected
,其中 selected[i]
表示 choices[i]
是否已被选择,并基于它实现以下剪枝操作。
- 在做出选择
choice[i]
后,我们就将selected[i]
赋值为 ,代表它已被选择。 - 遍历选择列表
choices
时,跳过所有已被选择过的节点,即剪枝。
如图 13-6 所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1 和元素 3 的分支。
图 13-6 全排列剪枝示例
观察图 13-6 发现,该剪枝操作将搜索空间大小从
2. 代码实现
想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短代码行数,我们不单独实现框架代码中的各个函数,而是将他们展开在 backtrack()
函数中。
permutations_i.cpp
/* 回溯算法:全排列 I */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 遍历所有选择
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i]) {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push_back(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 I */
vector<vector<int>> permutationsI(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
考虑相等元素的情况
Question
输入一个整数数组,数组中可能包含重复元素,返回所有不重复的排列。
假设输入数组为
如图 13-7 所示,上述方法生成的排列有一半都是重复的。
图 13-7 重复排列
那么如何去除重复的排列呢?最直接地,考虑借助一个哈希表,直接对排列结果进行去重。然而这样做不够优雅,因为生成重复排列的搜索分支是没有必要的,应当被提前识别并剪枝,这样可以进一步提升算法效率。
1. 相等元素剪枝¶
观察图 13-8 ,在第一轮中,选择
同理,在第一轮选择
本质上看,我们的目标是在某一轮选择中,保证多个相等的元素仅被选择一次。
图 13-8 重复排列剪枝
2. 代码实现
在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 duplicated
,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。
permutations_ii.cpp
/* 回溯算法:全排列 II */
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
// 当状态长度等于元素数量时,记录解
if (state.size() == choices.size()) {
res.push_back(state);
return;
}
// 遍历所有选择
unordered_set<int> duplicated;
for (int i = 0; i < choices.size(); i++) {
int choice = choices[i];
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i] && duplicated.find(choice) == duplicated.end()) {
// 尝试:做出选择,更新状态
duplicated.emplace(choice); // 记录选择过的元素值
selected[i] = true;
state.push_back(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop_back();
}
}
}
/* 全排列 II */
vector<vector<int>> permutationsII(vector<int> nums) {
vector<int> state;
vector<bool> selected(nums.size(), false);
vector<vector<int>> res;
backtrack(state, nums, selected, res);
return res;
}
假设元素两两之间互不相同,则
最大递归深度为 selected
使用 duplicated
,使用
3. 两种剪枝对比
请注意,虽然 selected
和 duplicated
都用作剪枝,但两者的目标是不同的。
- 重复选择剪枝:整个搜索过程中只有一个
selected
。它记录的是当前状态中包含哪些元素,作用是避免某个元素在state
中重复出现。 - 相等元素剪枝:每轮选择(即每个开启的
backtrack
函数)都包含一个duplicated
。它记录的是在遍历中哪些元素已被选择过,作用是保证相等元素只被选择一次。
图 13-9 展示了两个剪枝条件的生效范围。注意,树中的每个节点代表一个选择,从根节点到叶节点的路径上的各个节点构成一个排列。
图 13-9 两种剪枝条件的作用范围
更多建议: