C++插入排序

2023-09-20 09:21 更新

「插入排序 insertion sort」是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。

具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置。

图 11-6 展示了数组插入元素的操作流程。设基准元素为 base ,我们需要将从目标索引到 base 之间的所有元素向右移动一位,然后再将 base 赋值给目标索引。

单次插入操作

图 11-6   单次插入操作

算法流程

插入排序的整体流程如图 11-7 所示。

  1. 初始状态下,数组的第 1 个元素已完成排序。
  2. 选取数组的第 2 个元素作为 base ,将其插入到正确位置后,数组的前 2 个元素已排序。
  3. 选取第 3 个元素作为 base ,将其插入到正确位置后,数组的前 3 个元素已排序。
  4. 以此类推,在最后一轮中,选取最后一个元素作为 base ,将其插入到正确位置后,所有元素均已排序。

插入排序流程

图 11-7   插入排序流程

insertion_sort.cpp

/* 插入排序 */
void insertionSort(vector<int> &nums) {
    // 外循环:已排序元素数量为 1, 2, ..., n
    for (int i = 1; i < nums.size(); i++) {
        int base = nums[i], j = i - 1;
        // 内循环:将 base 插入到已排序部分的正确位置
        while (j >= 0 && nums[j] > base) {
            nums[j + 1] = nums[j]; // 将 nums[j] 向右移动一位
            j--;
        }
        nums[j + 1] = base; // 将 base 赋值到正确位置
    }
}

算法特性

  • 时间复杂度 O(n2)、自适应排序:最差情况下,每次插入操作分别需要循环 n 1 n2 2 1 次,求和得到 (n1)n/2 ,因此时间复杂度为 O ( n 2 ) 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 O(n)
  • 空间复杂度 O(1)、原地排序:指针 i j 使用常数大小的额外空间。
  • 稳定排序:在插入操作过程中,我们会将元素插入到相等元素的右侧,不会改变它们的顺序。

插入排序优势


插入排序的时间复杂度为 O(n2) ,而我们即将学习的快速排序的时间复杂度为 O(nlogn) 。尽管插入排序的时间复杂度相比快速排序更高,但在数据量较小的情况下,插入排序通常更快

这个结论与线性查找和二分查找的适用情况的结论类似。快速排序这类 O(nlogn) 的算法属于基于分治的排序算法,往往包含更多单元计算操作。而在数据量较小时,n2nlogn 的数值比较接近,复杂度不占主导作用;每轮中的单元操作数量起到决定性因素。

实际上,许多编程语言(例如 Java)的内置排序函数都采用了插入排序,大致思路为:对于长数组,采用基于分治的排序算法,例如快速排序;对于短数组,直接使用插入排序。

虽然冒泡排序、选择排序和插入排序的时间复杂度都为 O(n²) ,但在实际情况中,插入排序的使用频率显著高于冒泡排序和选择排序,主要有以下原因。

  • 冒泡排序基于元素交换实现,需要借助一个临时变量,共涉及 3 个单元操作;插入排序基于元素赋值实现,仅需 1 个单元操作。因此,冒泡排序的计算开销通常比插入排序更高。
  • 选择排序在任何情况下的时间复杂度都为 O(n²) 。如果给定一组部分有序的数据,插入排序通常比选择排序效率更高。
  • 选择排序不稳定,无法应用于多级排序。


以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号