C++列表
数组长度不可变导致实用性降低。在实际中,我们可能事先无法确定需要存储多少数据,这使数组长度的选择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。
为解决此问题,出现了一种被称为「动态数组 dynamic array」的数据结构,即长度可变的数组,也常被称为「列表 list」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。我们可以在列表中自由地添加元素,而无须担心超过容量限制。
列表常用操作
1. 初始化列表
我们通常使用“无初始值”和“有初始值”这两种初始化方法。
list.cpp
/* 初始化列表 */
// 需注意,C++ 中 vector 即是本文描述的 list
// 无初始值
vector<int> list1;
// 有初始值
vector<int> list = { 1, 3, 2, 5, 4 };
2. 访问元素
列表本质上是数组,因此可以在 O(1) 时间内访问和更新元素,效率很高。
list.cpp
/* 访问元素 */
int num = list[1]; // 访问索引 1 处的元素
/* 更新元素 */
list[1] = 0; // 将索引 1 处的元素更新为 0
3. 插入与删除元素
相较于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为
list.cpp
/* 清空列表 */
list.clear();
/* 尾部添加元素 */
list.push_back(1);
list.push_back(3);
list.push_back(2);
list.push_back(5);
list.push_back(4);
/* 中间插入元素 */
list.insert(list.begin() + 3, 6); // 在索引 3 处插入数字 6
/* 删除元素 */
list.erase(list.begin() + 3); // 删除索引 3 处的元素
4. 遍历列表
与数组一样,列表可以根据索引遍历,也可以直接遍历各元素。
list.cpp
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < list.size(); i++) {
count++;
}
/* 直接遍历列表元素 */
count = 0;
for (int n : list) {
count++;
}
5. 拼接列表
给定一个新列表 list1 ,我们可以将该列表拼接到原列表的尾部。
list.cpp
/* 拼接两个列表 */
vector<int> list1 = { 6, 8, 7, 10, 9 };
// 将列表 list1 拼接到 list 之后
list.insert(list.end(), list1.begin(), list1.end());
6. 排序列表
完成列表排序后,我们便可以使用在数组类算法题中经常考察的“二分查找”和“双指针”算法。
list.cpp
/* 排序列表 */
sort(list.begin(), list.end()); // 排序后,列表元素从小到大排列
列表实现
许多编程语言都提供内置的列表,例如 Java、C++、Python 等。它们的实现比较复杂,各个参数的设定也非常有考究,例如初始容量、扩容倍数等。感兴趣的读者可以查阅源码进行学习。
为了加深对列表工作原理的理解,我们尝试实现一个简易版列表,包括以下三个重点设计。
- 初始容量:选取一个合理的数组初始容量。在本示例中,我们选择 10 作为初始容量。
- 数量记录:声明一个变量 size,用于记录列表当前元素数量,并随着元素插入和删除实时更新。根据此变量,我们可以定位列表尾部,以及判断是否需要扩容。
- 扩容机制:若插入元素时列表容量已满,则需要进行扩容。首先根据扩容倍数创建一个更大的数组,再将当前数组的所有元素依次移动至新数组。在本示例中,我们规定每次将数组扩容至之前的 2 倍。
/* 列表类简易实现 */
class MyList {
private:
int *nums; // 数组(存储列表元素)
int numsCapacity = 10; // 列表容量
int numsSize = 0; // 列表长度(即当前元素数量)
int extendRatio = 2; // 每次列表扩容的倍数
public:
/* 构造方法 */
MyList() {
nums = new int[numsCapacity];
}
/* 析构方法 */
~MyList() {
delete[] nums;
}
/* 获取列表长度(即当前元素数量)*/
int size() {
return numsSize;
}
/* 获取列表容量 */
int capacity() {
return numsCapacity;
}
/* 访问元素 */
int get(int index) {
// 索引如果越界则抛出异常,下同
if (index < 0 || index >= size())
throw out_of_range("索引越界");
return nums[index];
}
/* 更新元素 */
void set(int index, int num) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
nums[index] = num;
}
/* 尾部添加元素 */
void add(int num) {
// 元素数量超出容量时,触发扩容机制
if (size() == capacity())
extendCapacity();
nums[size()] = num;
// 更新元素数量
numsSize++;
}
/* 中间插入元素 */
void insert(int index, int num) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
// 元素数量超出容量时,触发扩容机制
if (size() == capacity())
extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (int j = size() - 1; j >= index; j--) {
nums[j + 1] = nums[j];
}
nums[index] = num;
// 更新元素数量
numsSize++;
}
/* 删除元素 */
int remove(int index) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
int num = nums[index];
// 索引 i 之后的元素都向前移动一位
for (int j = index; j < size() - 1; j++) {
nums[j] = nums[j + 1];
}
// 更新元素数量
numsSize--;
// 返回被删除元素
return num;
}
/* 列表扩容 */
void extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组
int newCapacity = capacity() * extendRatio;
int *tmp = nums;
nums = new int[newCapacity];
// 将原数组中的所有元素复制到新数组
for (int i = 0; i < size(); i++) {
nums[i] = tmp[i];
}
// 释放内存
delete[] tmp;
numsCapacity = newCapacity;
}
/* 将列表转换为 Vector 用于打印 */
vector<int> toVector() {
// 仅转换有效长度范围内的列表元素
vector<int> vec(size());
for (int i = 0; i < size(); i++) {
vec[i] = nums[i];
}
return vec;
}
};
更多建议: