PyTorch NLP From Scratch: 生成名称与字符级RNN
2025-06-18 17:15 更新
在自然语言处理(NLP)领域,使用字符级循环神经网络(char-RNN)生成文本是一种有趣且强大的技术。本教程将教你如何使用字符级 RNN 生成不同语言风格的姓名。通过学习本教程,你将掌握如何从字符级别构建和训练生成模型。
一、准备数据
我们使用包含来自 18 种不同语言的姓氏的数据集。这些数据存储在多个文本文件中,每个文件对应一种语言。我们需要将这些数据加载到内存中,并进行预处理。
from io import open
import glob
import os
import unicodedata
import string
all_letters = string.ascii_letters + " .,;'-"
n_letters = len(all_letters) + 1 # 加上结束标记
def findFiles(path):
return glob.glob(path)
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn' and c in all_letters
)
def readLines(filename):
lines = open(filename, encoding='utf-8').read().strip().split('\n')
return [unicodeToAscii(line) for line in lines]
category_lines = {}
all_categories = []
for filename in findFiles('data/names/*.txt'):
category = os.path.splitext(os.path.basename(filename))[0]
all_categories.append(category)
lines = readLines(filename)
category_lines[category] = lines
n_categories = len(all_categories)
print('# categories:', n_categories, all_categories)
print(unicodeToAscii("O'Néàl"))
二、构建网络
我们将构建一个字符级 RNN 模型,用于根据语言生成姓名。该模型将输入语言类别和当前字符,并输出下一个字符的概率分布。
import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.dropout = nn.Dropout(0.1)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, category, input, hidden):
input_combined = torch.cat((category, input, hidden), 1)
hidden = self.i2h(input_combined)
output = self.i2o(input_combined)
output_combined = torch.cat((hidden, output), 1)
output = self.o2o(output_combined)
output = self.dropout(output)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
rnn = RNN(n_letters, 128, n_letters)
三、训练模型
1. 准备训练数据
import random
def randomChoice(l):
return l[random.randint(0, len(l) - 1)]
def randomTrainingPair():
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
return category, line
def categoryTensor(category):
li = all_categories.index(category)
tensor = torch.zeros(1, n_categories)
tensor[0][li] = 1
return tensor
def inputTensor(line):
tensor = torch.zeros(len(line), 1, n_letters)
for li in range(len(line)):
letter = line[li]
tensor[li][0][all_letters.find(letter)] = 1
return tensor
def targetTensor(line):
letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))]
letter_indexes.append(n_letters - 1) # EOS
return torch.LongTensor(letter_indexes)
def randomTrainingExample():
category, line = randomTrainingPair()
category_tensor = categoryTensor(category)
input_line_tensor = inputTensor(line)
target_line_tensor = targetTensor(line)
return category_tensor, input_line_tensor, target_line_tensor
2. 定义训练函数
criterion = nn.NLLLoss()
learning_rate = 0.0005
def train(category_tensor, input_line_tensor, target_line_tensor):
target_line_tensor.unsqueeze_(-1)
hidden = rnn.initHidden()
rnn.zero_grad()
loss = 0
for i in range(input_line_tensor.size(0)):
output, hidden = rnn(category_tensor, input_line_tensor[i], hidden)
l = criterion(output, target_line_tensor[i])
loss += l
loss.backward()
for p in rnn.parameters():
p.data.add_(-learning_rate, p.grad.data)
return output, loss.item() / input_line_tensor.size(0)
3. 进行训练
import time
import math
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
n_iters = 100000
print_every = 5000
plot_every = 500
all_losses = []
total_loss = 0
start = time.time()
for iter in range(1, n_iters + 1):
output, loss = train(*randomTrainingExample())
total_loss += loss
if iter % print_every == 0:
print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss))
if iter % plot_every == 0:
all_losses.append(total_loss / plot_every)
total_loss = 0
四、网络采样
1. 绘制训练损失曲线
import matplotlib.pyplot as plt
plt.figure()
plt.plot(all_losses)
plt.title("Training Loss Curve")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.show()
2. 生成姓名
max_length = 20
def sample(category, start_letter='A'):
with torch.no_grad():
category_tensor = categoryTensor(category)
input = inputTensor(start_letter)
hidden = rnn.initHidden()
output_name = start_letter
for i in range(max_length):
output, hidden = rnn(category_tensor, input[0], hidden)
topv, topi = output.topk(1)
topi = topi[0][0]
if topi == n_letters - 1:
break
else:
letter = all_letters[topi]
output_name += letter
input = inputTensor(letter)
return output_name
def samples(category, start_letters='ABC'):
for start_letter in start_letters:
print(sample(category, start_letter))
samples('Russian', 'RUS')
samples('German', 'GER')
samples('Spanish', 'SPA')
samples('Chinese', 'CHI')
通过本教程,你学会了如何使用 PyTorch 构建和训练字符级 RNN 模型,用于生成不同语言风格的姓名。
以上内容是否对您有帮助:
更多建议: