Pandas 计算工具
#Statistical functions
#Percent change
Series
and DataFrame
have a method pct_change()
to compute the percent change over a given number of periods (using fill_method
to fill NA/null values before computing the percent change).
In [1]: ser = pd.Series(np.random.randn(8))
In [2]: ser.pct_change()
Out[2]:
0 NaN
1 -1.602976
2 4.334938
3 -0.247456
4 -2.067345
5 -1.142903
6 -1.688214
7 -9.759729
dtype: float64
In [3]: df = pd.DataFrame(np.random.randn(10, 4))
In [4]: df.pct_change(periods=3)
Out[4]:
0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058 0.036094 -0.067696
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 -1.003744 -0.371806
#Covariance
Series.cov()
can be used to compute covariance between series (excluding missing values).
In [5]: s1 = pd.Series(np.random.randn(1000))
In [6]: s2 = pd.Series(np.random.randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.000680108817431082
Analogously, DataFrame.cov()
to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.
Note
Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matricesfor more details.
In [8]: frame = pd.DataFrame(np.random.randn(1000, 5),
...: columns=['a', 'b', 'c', 'd', 'e'])
...:
In [9]: frame.cov()
Out[9]:
a b c d e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 0.000191 0.950735 -0.031743 -0.005087
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487
DataFrame.cov
also supports an optional min_periods
keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.
In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [11]: frame.loc[frame.index[:5], 'a'] = np.nan
In [12]: frame.loc[frame.index[5:10], 'b'] = np.nan
In [13]: frame.cov()
Out[13]:
a b c
a 1.123670 -0.412851 0.018169
b -0.412851 1.154141 0.305260
c 0.018169 0.305260 1.301149
In [14]: frame.cov(min_periods=12)
Out[14]:
a b c
a 1.123670 NaN 0.018169
b NaN 1.154141 0.305260
c 0.018169 0.305260 1.301149
#Correlation
Correlation may be computed using the corr()
method. Using the method
parameter, several methods for computing correlations are provided:
Method name | Description |
---|---|
pearson (default) | Standard correlation coefficient |
kendall | Kendall Tau correlation coefficient |
spearman | Spearman rank correlation coefficient |
All of these are currently computed using pairwise complete observations. Wikipedia has articles covering the above correlation coefficients:
- Pearson correlation coefficient
- Kendall rank correlation coefficient
- Spearman’s rank correlation coefficient
- Note
Please see the caveats associated with this method of calculating correlation matrices in the covariance section.
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5),
....: columns=['a', 'b', 'c', 'd', 'e'])
....:
In [16]: frame.iloc[::2] = np.nan
# Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098794
In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.007289885159540637
# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
a b c d e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000
Note that non-numeric columns will be automatically excluded from the correlation calculation.
Like cov
, corr
also supports the optional min_periods
keyword:
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [21]: frame.loc[frame.index[:5], 'a'] = np.nan
In [22]: frame.loc[frame.index[5:10], 'b'] = np.nan
In [23]: frame.corr()
Out[23]:
a b c
a 1.000000 -0.121111 0.069544
b -0.121111 1.000000 0.051742
c 0.069544 0.051742 1.000000
In [24]: frame.corr(min_periods=12)
Out[24]:
a b c
a 1.000000 NaN 0.069544
b NaN 1.000000 0.051742
c 0.069544 0.051742 1.000000
New in version 0.24.0.
The method
argument can also be a callable for a generic correlation calculation. In this case, it should be a single function that produces a single value from two ndarray inputs. Suppose we wanted to compute the correlation based on histogram intersection:
# histogram intersection
In [25]: def histogram_intersection(a, b):
....: return np.minimum(np.true_divide(a, a.sum()),
....: np.true_divide(b, b.sum())).sum()
....:
In [26]: frame.corr(method=histogram_intersection)
Out[26]:
a b c
a 1.000000 -6.404882 -2.058431
b -6.404882 1.000000 -19.255743
c -2.058431 -19.255743 1.000000
A related method corrwith()
is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.
In [27]: index = ['a', 'b', 'c', 'd', 'e']
In [28]: columns = ['one', 'two', 'three', 'four']
In [29]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
In [30]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
In [31]: df1.corrwith(df2)
Out[31]:
one -0.125501
two -0.493244
three 0.344056
four 0.004183
dtype: float64
In [32]: df2.corrwith(df1, axis=1)
Out[32]:
a -0.675817
b 0.458296
c 0.190809
d -0.186275
e NaN
dtype: float64
#Data ranking
The rank()
method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:
In [33]: s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))
In [34]: s['d'] = s['b'] # so there's a tie
In [35]: s.rank()
Out[35]:
a 5.0
b 2.5
c 1.0
d 2.5
e 4.0
dtype: float64
rank()
is also a DataFrame method and can rank either the rows (axis=0
) or the columns (axis=1
). NaN
values are excluded from the ranking.
In [36]: df = pd.DataFrame(np.random.np.random.randn(10, 6))
In [37]: df[4] = df[2][:5] # some ties
In [38]: df
Out[38]:
0 1 2 3 4 5
0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004
3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347
6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180
7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422
8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544
9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064
In [39]: df.rank(1)
Out[39]:
0 1 2 3 4 5
0 4.0 3.0 1.5 5.0 1.5 6.0
1 2.0 6.0 4.5 1.0 4.5 3.0
2 1.0 6.0 3.5 5.0 3.5 2.0
3 4.0 5.0 1.5 3.0 1.5 6.0
4 5.0 3.0 1.5 4.0 1.5 6.0
5 1.0 2.0 5.0 3.0 NaN 4.0
6 4.0 5.0 3.0 1.0 NaN 2.0
7 2.0 5.0 3.0 4.0 NaN 1.0
8 2.0 5.0 3.0 4.0 NaN 1.0
9 2.0 3.0 1.0 4.0 NaN 5.0
rank
optionally takes a parameter ascending
which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.
rank
supports different tie-breaking methods, specified with the method
parameter:
average
: average rank of tied groupmin
: lowest rank in the groupmax
: highest rank in the groupfirst
: ranks assigned in the order they appear in the array
#Window Functions
For working with data, a number of window functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis.
The rolling()
and expanding()
functions can be used directly from DataFrameGroupBy objects, see the groupby docs.
Note
The API for window statistics is quite similar to the way one works with GroupBy
objects, see the documentation here.
We work with rolling
, expanding
and exponentially weighted
data through the corresponding objects, Rolling
, Expanding
and EWM
.
In [40]: s = pd.Series(np.random.randn(1000),
....: index=pd.date_range('1/1/2000', periods=1000))
....:
In [41]: s = s.cumsum()
In [42]: s
Out[42]:
2000-01-01 -0.268824
2000-01-02 -1.771855
2000-01-03 -0.818003
2000-01-04 -0.659244
2000-01-05 -1.942133
...
2002-09-22 -67.457323
2002-09-23 -69.253182
2002-09-24 -70.296818
2002-09-25 -70.844674
2002-09-26 -72.475016
Freq: D, Length: 1000, dtype: float64
These are created from methods on Series
and DataFrame
.
In [43]: r = s.rolling(window=60)
In [44]: r
Out[44]: Rolling [window=60,center=False,axis=0]
These object provide tab-completion of the available methods and properties.
In [14]: r.<TAB> # noqa: E225, E999
r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum
r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
Generally these methods all have the same interface. They all accept the following arguments:
window
: size of moving windowmin_periods
: threshold of non-null data points to require (otherwise result is NA)center
: boolean, whether to set the labels at the center (default is False)
We can then call methods on these rolling
objects. These return like-indexed objects:
In [45]: r.mean()
Out[45]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 NaN
...
2002-09-22 -62.914971
2002-09-23 -63.061867
2002-09-24 -63.213876
2002-09-25 -63.375074
2002-09-26 -63.539734
Freq: D, Length: 1000, dtype: float64
In [46]: s.plot(style='k--')
Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0>
In [47]: r.mean().plot(style='k')
Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0>
They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:
In [48]: df = pd.DataFrame(np.random.randn(1000, 4),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C', 'D'])
....:
In [49]: df = df.cumsum()
In [50]: df.rolling(window=60).sum().plot(subplots=True)
Out[50]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f66075a7f60>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f65f79e55c0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f65f7998588>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f65f794b550>],
dtype=object)
#Method summary
We provide a number of common statistical functions:
Method | Description |
---|---|
count() | Number of non-null observations |
sum() | Sum of values |
mean() | Mean of values |
median() | Arithmetic median of values |
min() | Minimum |
max() | Maximum |
std() | Bessel-corrected sample standard deviation |
var() | Unbiased variance |
skew() | Sample skewness (3rd moment) |
kurt() | Sample kurtosis (4th moment) |
quantile() | Sample quantile (value at %) |
apply() | Generic apply |
cov() | Unbiased covariance (binary) |
corr() | Correlation (binary) |
The apply()
function takes an extra func
argument and performs generic rolling computations. The func
argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:
In [51]: def mad(x):
....: return np.fabs(x - x.mean()).mean()
....:
In [52]: s.rolling(window=60).apply(mad, raw=True).plot(style='k')
Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f795fac8>
#Rolling windows
Passing win_type
to .rolling
generates a generic rolling window computation, that is weighted according the win_type
. The following methods are available:
Method | Description |
---|---|
sum() | Sum of values |
mean() | Mean of values |
The weights used in the window are specified by the win_type
keyword. The list of recognized types are the scipy.signal window functions:
boxcar
triang
blackman
hamming
bartlett
parzen
bohman
blackmanharris
nuttall
barthann
kaiser
(needs beta)gaussian
(needs std)general_gaussian
(needs power, width)slepian
(needs width)exponential
(needs tau).
In [53]: ser = pd.Series(np.random.randn(10),
....: index=pd.date_range('1/1/2000', periods=10))
....:
In [54]: ser.rolling(window=5, win_type='triang').mean()
Out[54]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.037870
2000-01-06 -0.767705
2000-01-07 -0.383197
2000-01-08 -0.395513
2000-01-09 -0.558440
2000-01-10 -0.672416
Freq: D, dtype: float64
Note that the boxcar
window is equivalent to mean()
In [55]: ser.rolling(window=5, win_type='boxcar').mean()
Out[55]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64
In [56]: ser.rolling(window=5).mean()
Out[56]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64
For some windowing functions, additional parameters must be specified:
In [57]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1)
Out[57]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.309989
2000-01-06 -1.153000
2000-01-07 0.606382
2000-01-08 -0.681101
2000-01-09 -0.289724
2000-01-10 -0.996632
Freq: D, dtype: float64
Note
For .sum()
with a win_type
, there is no normalization done to the weights for the window. Passing custom weights of [1, 1, 1]
will yield a different result than passing weights of [2, 2, 2]
, for example. When passing a win_type
instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.
In contrast, the nature of the .mean()
calculation is such that the weights are normalized with respect to each other. Weights of [1, 1, 1]
and [2, 2, 2]
yield the same result.
#Time-aware rolling
New in version 0.19.0.
New in version 0.19.0 are the ability to pass an offset (or convertible) to a .rolling()
method and have it produce variable sized windows based on the passed time window. For each time point, this includes all preceding values occurring within the indicated time delta.
This can be particularly useful for a non-regular time frequency index.
In [58]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index=pd.date_range('20130101 09:00:00',
....: periods=5,
....: freq='s'))
....:
In [59]: dft
Out[59]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [60]: dft.rolling(2).sum()
Out[60]:
B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN
In [61]: dft.rolling(2, min_periods=1).sum()
Out[61]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [62]: dft.rolling('2s').sum()
Out[62]:
B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [63]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
....: index=pd.Index([pd.Timestamp('20130101 09:00:00'),
....: pd.Timestamp('20130101 09:00:02'),
....: pd.Timestamp('20130101 09:00:03'),
....: pd.Timestamp('20130101 09:00:05'),
....: pd.Timestamp('20130101 09:00:06')],
....: name='foo'))
....:
In [64]: dft
Out[64]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
In [65]: dft.rolling(2).sum()
Out[65]:
B
foo
2013-01-01 09:00:00 NaN
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 NaN
Using the time-specification generates variable windows for this sparse data.
In [66]: dft.rolling('2s').sum()
Out[66]:
B
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
Furthermore, we now allow an optional on
parameter to specify a column (rather than the default of the index) in a DataFrame.
In [67]: dft = dft.reset_index()
In [68]: dft
Out[68]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
In [69]: dft.rolling('2s', on='foo').sum()
Out[69]:
foo B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
#Rolling window endpoints
New in version 0.20.0.
The inclusion of the interval endpoints in rolling window calculations can be specified with the closed
parameter:
closed | Description | Default for |
---|---|---|
right | close right endpoint | time-based windows |
left | close left endpoint | |
both | close both endpoints | fixed windows |
neither | open endpoints |
For example, having the right endpoint open is useful in many problems that require that there is no contamination from present information back to past information. This allows the rolling window to compute statistics “up to that point in time”, but not including that point in time.
In [70]: df = pd.DataFrame({'x': 1},
....: index=[pd.Timestamp('20130101 09:00:01'),
....: pd.Timestamp('20130101 09:00:02'),
....: pd.Timestamp('20130101 09:00:03'),
....: pd.Timestamp('20130101 09:00:04'),
....: pd.Timestamp('20130101 09:00:06')])
....:
In [71]: df["right"] = df.rolling('2s', closed='right').x.sum() # default
In [72]: df["both"] = df.rolling('2s', closed='both').x.sum()
In [73]: df["left"] = df.rolling('2s', closed='left').x.sum()
In [74]: df["neither"] = df.rolling('2s', closed='neither').x.sum()
In [75]: df
Out[75]:
x right both left neither
2013-01-01 09:00:01 1 1.0 1.0 NaN NaN
2013-01-01 09:00:02 1 2.0 2.0 1.0 1.0
2013-01-01 09:00:03 1 2.0 3.0 2.0 1.0
2013-01-01 09:00:04 1 2.0 3.0 2.0 1.0
2013-01-01 09:00:06 1 1.0 2.0 1.0 NaN
Currently, this feature is only implemented for time-based windows. For fixed windows, the closed parameter cannot be set and the rolling window will always have both endpoints closed.
#Time-aware rolling vs. resampling
Using .rolling()
with a time-based index is quite similar to resampling. They both operate and perform reductive operations on time-indexed pandas objects.
When using .rolling()
with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same sized result as the input.
When using .resample()
with an offset. Construct a new index that is the frequency of the offset. For each frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The result of this aggregation is the output for that frequency point. The windows are fixed size in the frequency space. Your result will have the shape of a regular frequency between the min and the max of the original input object.
To summarize, .rolling()
is a time-based window operation, while .resample()
is a frequency-based window operation.
#Centering windows
By default the labels are set to the right edge of the window, but a center
keyword is available so the labels can be set at the center.
In [76]: ser.rolling(window=5).mean()
Out[76]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64
In [77]: ser.rolling(window=5, center=True).mean()
Out[77]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 -0.841164
2000-01-04 -0.779948
2000-01-05 -0.565487
2000-01-06 -0.502815
2000-01-07 -0.553755
2000-01-08 -0.472211
2000-01-09 NaN
2000-01-10 NaN
Freq: D, dtype: float64
#Binary window functions
cov()
and corr()
can compute moving window statistics about two Series
or any combination of DataFrame/Series
or DataFrame/DataFrame
. Here is the behavior in each case:
- two
Series
: compute the statistic for the pairing. DataFrame/Series
: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame.DataFrame/DataFrame
: by default compute the statistic for matching column names, returning a DataFrame. If the keyword argumentpairwise=True
is passed then computes the statistic for each pair of columns, returning aMultiIndexed DataFrame
whoseindex
are the dates in question (see the next section).
For example:
In [78]: df = pd.DataFrame(np.random.randn(1000, 4),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C', 'D'])
....:
In [79]: df = df.cumsum()
In [80]: df2 = df[:20]
In [81]: df2.rolling(window=5).corr(df2['B'])
Out[81]:
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 NaN NaN NaN NaN
2000-01-04 NaN NaN NaN NaN
2000-01-05 0.768775 1.0 -0.977990 0.800252
... ... ... ... ...
2000-01-16 0.691078 1.0 0.807450 -0.939302
2000-01-17 0.274506 1.0 0.582601 -0.902954
2000-01-18 0.330459 1.0 0.515707 -0.545268
2000-01-19 0.046756 1.0 -0.104334 -0.419799
2000-01-20 -0.328241 1.0 -0.650974 -0.777777
[20 rows x 4 columns]
#Computing rolling pairwise covariances and correlations
In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the pairwise
keyword argument, which in the case of DataFrame
inputs will yield a MultiIndexed DataFrame
whose index
are the dates in question. In the case of a single DataFrame argument the pairwise
argument can even be omitted:
Note
Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.
In [82]: covs = (df[['B', 'C', 'D']].rolling(window=50)
....: .cov(df[['A', 'B', 'C']], pairwise=True))
....:
In [83]: covs.loc['2002-09-22':]
Out[83]:
B C D
2002-09-22 A 1.367467 8.676734 -8.047366
B 3.067315 0.865946 -1.052533
C 0.865946 7.739761 -4.943924
2002-09-23 A 0.910343 8.669065 -8.443062
B 2.625456 0.565152 -0.907654
C 0.565152 7.825521 -5.367526
2002-09-24 A 0.463332 8.514509 -8.776514
B 2.306695 0.267746 -0.732186
C 0.267746 7.771425 -5.696962
2002-09-25 A 0.467976 8.198236 -9.162599
B 2.307129 0.267287 -0.754080
C 0.267287 7.466559 -5.822650
2002-09-26 A 0.545781 7.899084 -9.326238
B 2.311058 0.322295 -0.844451
C 0.322295 7.038237 -5.684445
In [84]: correls = df.rolling(window=50).corr()
In [85]: correls.loc['2002-09-22':]
Out[85]:
A B C D
2002-09-22 A 1.000000 0.186397 0.744551 -0.769767
B 0.186397 1.000000 0.177725 -0.240802
C 0.744551 0.177725 1.000000 -0.712051
D -0.769767 -0.240802 -0.712051 1.000000
2002-09-23 A 1.000000 0.134723 0.743113 -0.758758
... ... ... ... ...
2002-09-25 D -0.739160 -0.164179 -0.704686 1.000000
2002-09-26 A 1.000000 0.087756 0.727792 -0.736562
B 0.087756 1.000000 0.079913 -0.179477
C 0.727792 0.079913 1.000000 -0.692303
D -0.736562 -0.179477 -0.692303 1.000000
[20 rows x 4 columns]
You can efficiently retrieve the time series of correlations between two columns by reshaping and indexing:
In [86]: correls.unstack(1)[('A', 'C')].plot()
Out[86]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f8dc79e8>
#Aggregation
Once the Rolling
, Expanding
or EWM
objects have been created, several methods are available to perform multiple computations on the data. These operations are similar to the aggregating API groupby API, and resample API.
In [87]: dfa = pd.DataFrame(np.random.randn(1000, 3),
....: index=pd.date_range('1/1/2000', periods=1000),
....: columns=['A', 'B', 'C'])
....:
In [88]: r = dfa.rolling(window=60, min_periods=1)
In [89]: r
Out[89]: Rolling [window=60,min_periods=1,center=False,axis=0]
We can aggregate by passing a function to the entire DataFrame, or select a Series (or multiple Series) via standard __getitem__
.
In [90]: r.aggregate(np.sum)
Out[90]:
A B C
2000-01-01 -0.289838 -0.370545 -1.284206
2000-01-02 -0.216612 -1.675528 -1.169415
2000-01-03 1.154661 -1.634017 -1.566620
2000-01-04 2.969393 -4.003274 -1.816179
2000-01-05 4.690630 -4.682017 -2.717209
... ... ... ...
2002-09-22 2.860036 -9.270337 6.415245
2002-09-23 3.510163 -8.151439 5.177219
2002-09-24 6.524983 -10.168078 5.792639
2002-09-25 6.409626 -9.956226 5.704050
2002-09-26 5.093787 -7.074515 6.905823
[1000 rows x 3 columns]
In [91]: r['A'].aggregate(np.sum)
Out[91]:
2000-01-01 -0.289838
2000-01-02 -0.216612
2000-01-03 1.154661
2000-01-04 2.969393
2000-01-05 4.690630
...
2002-09-22 2.860036
2002-09-23 3.510163
2002-09-24 6.524983
2002-09-25 6.409626
2002-09-26 5.093787
Freq: D, Name: A, Length: 1000, dtype: float64
In [92]: r[['A', 'B']].aggregate(np.sum)
Out[92]:
A B
2000-01-01 -0.289838 -0.370545
2000-01-02 -0.216612 -1.675528
2000-01-03 1.154661 -1.634017
2000-01-04 2.969393 -4.003274
2000-01-05 4.690630 -4.682017
... ... ...
2002-09-22 2.860036 -9.270337
2002-09-23 3.510163 -8.151439
2002-09-24 6.524983 -10.168078
2002-09-25 6.409626 -9.956226
2002-09-26 5.093787 -7.074515
[1000 rows x 2 columns]
As you can see, the result of the aggregation will have the selected columns, or all columns if none are selected.
#Applying multiple functions
With windowed Series
you can also pass a list of functions to do aggregation with, outputting a DataFrame:
In [93]: r['A'].agg([np.sum, np.mean, np.std])
Out[93]:
sum mean std
2000-01-01 -0.289838 -0.289838 NaN
2000-01-02 -0.216612 -0.108306 0.256725
2000-01-03 1.154661 0.384887 0.873311
2000-01-04 2.969393 0.742348 1.009734
2000-01-05 4.690630 0.938126 0.977914
... ... ... ...
2002-09-22 2.860036 0.047667 1.132051
2002-09-23 3.510163 0.058503 1.134296
2002-09-24 6.524983 0.108750 1.144204
2002-09-25 6.409626 0.106827 1.142913
2002-09-26 5.093787 0.084896 1.151416
[1000 rows x 3 columns]
On a windowed DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:
In [94]: r.agg([np.sum, np.mean])
Out[94]:
A B C
sum mean sum mean sum mean
2000-01-01 -0.289838 -0.289838 -0.370545 -0.370545 -1.284206 -1.284206
2000-01-02 -0.216612 -0.108306 -1.675528 -0.837764 -1.169415 -0.584708
2000-01-03 1.154661 0.384887 -1.634017 -0.544672 -1.566620 -0.522207
2000-01-04 2.969393 0.742348 -4.003274 -1.000819 -1.816179 -0.454045
2000-01-05 4.690630 0.938126 -4.682017 -0.936403 -2.717209 -0.543442
... ... ... ... ... ... ...
2002-09-22 2.860036 0.047667 -9.270337 -0.154506 6.415245 0.106921
2002-09-23 3.510163 0.058503 -8.151439 -0.135857 5.177219 0.086287
2002-09-24 6.524983 0.108750 -10.168078 -0.169468 5.792639 0.096544
2002-09-25 6.409626 0.106827 -9.956226 -0.165937 5.704050 0.095068
2002-09-26 5.093787 0.084896 -7.074515 -0.117909 6.905823 0.115097
[1000 rows x 6 columns]
Passing a dict of functions has different behavior by default, see the next section.
#Applying different functions to DataFrame columns
By passing a dict to aggregate
you can apply a different aggregation to the columns of a DataFrame
:
In [95]: r.agg({'A': np.sum, 'B': lambda x: np.std(x, ddof=1)})
Out[95]:
A B
2000-01-01 -0.289838 NaN
2000-01-02 -0.216612 0.660747
2000-01-03 1.154661 0.689929
2000-01-04 2.969393 1.072199
2000-01-05 4.690630 0.939657
... ... ...
2002-09-22 2.860036 1.113208
2002-09-23 3.510163 1.132381
2002-09-24 6.524983 1.080963
2002-09-25 6.409626 1.082911
2002-09-26 5.093787 1.136199
[1000 rows x 2 columns]
The function names can also be strings. In order for a string to be valid it must be implemented on the windowed object
In [96]: r.agg({'A': 'sum', 'B': 'std'})
Out[96]:
A B
2000-01-01 -0.289838 NaN
2000-01-02 -0.216612 0.660747
2000-01-03 1.154661 0.689929
2000-01-04 2.969393 1.072199
2000-01-05 4.690630 0.939657
... ... ...
2002-09-22 2.860036 1.113208
2002-09-23 3.510163 1.132381
2002-09-24 6.524983 1.080963
2002-09-25 6.409626 1.082911
2002-09-26 5.093787 1.136199
[1000 rows x 2 columns]
Furthermore you can pass a nested dict to indicate different aggregations on different columns.
In [97]: r.agg({'A': ['sum', 'std'], 'B': ['mean', 'std']})
Out[97]:
A B
sum std mean std
2000-01-01 -0.289838 NaN -0.370545 NaN
2000-01-02 -0.216612 0.256725 -0.837764 0.660747
2000-01-03 1.154661 0.873311 -0.544672 0.689929
2000-01-04 2.969393 1.009734 -1.000819 1.072199
2000-01-05 4.690630 0.977914 -0.936403 0.939657
... ... ... ... ...
2002-09-22 2.860036 1.132051 -0.154506 1.113208
2002-09-23 3.510163 1.134296 -0.135857 1.132381
2002-09-24 6.524983 1.144204 -0.169468 1.080963
2002-09-25 6.409626 1.142913 -0.165937 1.082911
2002-09-26 5.093787 1.151416 -0.117909 1.136199
[1000 rows x 4 columns]
#Expanding windows
A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time.
These follow a similar interface to .rolling
, with the .expanding
method returning an Expanding
object.
As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:
In [98]: df.rolling(window=len(df), min_periods=1).mean()[:5]
Out[98]:
A B C D
2000-01-01 0.314226 -0.001675 0.071823 0.892566
2000-01-02 0.654522 -0.171495 0.179278 0.853361
2000-01-03 0.708733 -0.064489 -0.238271 1.371111
2000-01-04 0.987613 0.163472 -0.919693 1.566485
2000-01-05 1.426971 0.288267 -1.358877 1.808650
In [99]: df.expanding(min_periods=1).mean()[:5]
Out[99]:
A B C D
2000-01-01 0.314226 -0.001675 0.071823 0.892566
2000-01-02 0.654522 -0.171495 0.179278 0.853361
2000-01-03 0.708733 -0.064489 -0.238271 1.371111
2000-01-04 0.987613 0.163472 -0.919693 1.566485
2000-01-05 1.426971 0.288267 -1.358877 1.808650
These have a similar set of methods to .rolling
methods.
#Method summary
Function | Description |
---|---|
count() | Number of non-null observations |
sum() | Sum of values |
mean() | Mean of values |
median() | Arithmetic median of values |
min() | Minimum |
max() | Maximum |
std() | Unbiased standard deviation |
var() | Unbiased variance |
skew() | Unbiased skewness (3rd moment) |
kurt() | Unbiased kurtosis (4th moment) |
quantile() | Sample quantile (value at %) |
apply() | Generic apply |
cov() | Unbiased covariance (binary) |
corr() | Correlation (binary) |
Aside from not having a window
parameter, these functions have the same interfaces as their .rolling
counterparts. Like above, the parameters they all accept are:
min_periods
: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. NoNaNs
will be output oncemin_periods
non-null data points have been seen.center
: boolean, whether to set the labels at the center (default is False).
Note
The output of the .rolling
and .expanding
methods do not return a NaN
if there are at least min_periods
non-null values in the current window. For example:
In [100]: sn = pd.Series([1, 2, np.nan, 3, np.nan, 4])
In [101]: sn
Out[101]:
0 1.0
1 2.0
2 NaN
3 3.0
4 NaN
5 4.0
dtype: float64
In [102]: sn.rolling(2).max()
Out[102]:
0 NaN
1 2.0
2 NaN
3 NaN
4 NaN
5 NaN
dtype: float64
In [103]: sn.rolling(2, min_periods=1).max()
Out[103]:
0 1.0
1 2.0
2 2.0
3 3.0
4 3.0
5 4.0
dtype: float64
In case of expanding functions, this differs from cumsum()
cumprod()
cummax()
and cummin()
which return NaN
in the output wherever a NaN
is encountered in the input. In order to match the output of cumsum
with expanding
, use fillna()
In [104]: sn.expanding().sum()
Out[104]:
0 1.0
1 3.0
2 3.0
3 6.0
4 6.0
5 10.0
dtype: float64
In [105]: sn.cumsum()
Out[105]:
0 1.0
1 3.0
2 NaN
3 6.0
4 NaN
5 10.0
dtype: float64
In [106]: sn.cumsum().fillna(method='ffill')
Out[106]:
0 1.0
1 3.0
2 3.0
3 6.0
4 6.0
5 10.0
dtype: float64
An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the mean(
output for the previous time series dataset:
In [107]: s.plot(style='k--')
Out[107]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6607b14400>
In [108]: s.expanding().mean().plot(style='k')
Out[108]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6607b14400>
#Exponentially weighted windows
A related set of functions are exponentially weighted versions of several of the above statistics. A similar interface to .rolling
and .expanding
is accessed through the .ewm
method to receive an EWM
object. A number of expanding EW (exponentially weighted) methods are provided:
Function | Description |
---|---|
mean() | EW moving average |
var() | EW moving variance |
std() | EW moving standard deviation |
corr() | EW moving correlation |
cov() | EW moving covariance |
In general, a weighted moving average is calculated as
where xtxt is the input, ytyt is the result and the wiwi are the weights.
The EW functions support two variants of exponential weights. The default, adjust=True
, uses the weights wi=(1−α)iwi=(1−α)i which gives
When adjust=False
is specified, moving averages are calculated as
which is equivalent to using weights
Note
These equations are sometimes written in terms of α′=1−αα′=1−α, e.g.
The difference between the above two variants arises because we are dealing with series which have finite history. Consider a series of infinite history, with adjust=True
:
Noting that the denominator is a geometric series with initial term equal to 1 and a ratio of 1−α1−α we have
which is the same expression as adjust=False
above and therefore shows the equivalence of the two variants for infinite series. When adjust=False
, we have y0=x0y0=x0 and yt=αxt+(1−α)yt−1yt=αxt+(1−α)yt−1. Therefore, there is an assumption that x0x0 is not an ordinary value but rather an exponentially weighted moment of the infinite series up to that point.
One must have 0<α≤10<α≤1, and while since version 0.18.0 it has been possible to pass αα directly, it’s often easier to think about either the span, center of mass (com) or half-life of an EW moment:
One must specify precisely one of span, center of mass, half-life and alpha to the EW functions:
- Span corresponds to what is commonly called an “N-day EW moving average”.
- Center of mass has a more physical interpretation and can be thought of in terms of span: c=(s−1)/2c=(s−1)/2.
- Half-life is the period of time for the exponential weight to reduce to one half.
- Alpha specifies the smoothing factor directly.
Here is an example for a univariate time series:
In [109]: s.plot(style='k--')
Out[109]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f7537278>
In [110]: s.ewm(span=20).mean().plot(style='k')
Out[110]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f7537278>
EWM has a min_periods
argument, which has the same meaning it does for all the .expanding
and .rolling
methods: no output values will be set until at least min_periods
non-null values are encountered in the (expanding) window.
EWM also has an ignore_na
argument, which determines how intermediate null values affect the calculation of the weights. When ignore_na=False
(the default), weights are calculated based on absolute positions, so that intermediate null values affect the result. When ignore_na=True
, weights are calculated by ignoring intermediate null values. For example, assuming adjust=True
, if ignore_na=False
, the weighted average of 3, NaN, 5
would be calculated as
Whereas if ignore_na=True
, the weighted average would be calculated as
The var()
, std()
, and cov()
functions have a bias
argument, specifying whether the result should contain biased or unbiased statistics. For example, if bias=True
, ewmvar(x)
is calculated as ewmvar(x) = ewma(x**2) - ewma(x)**2
; whereas if bias=False
(the default), the biased variance statistics are scaled by debiasing factors
(For wi=1wi=1, this reduces to the usual N/(N−1)N/(N−1) factor, with N=t+1N=t+1.) See Weighted Sample Variance
更多建议: