TensorFlow函数:tf.metrics.mean_relative_error

2018-10-10 16:04 更新

tf.metrics.mean_relative_error函数

tf.metrics.mean_relative_error(
    labels,
    predictions,
    normalizer,
    weights=None,
    metrics_collections=None,
    updates_collections=None,
    name=None
)

定义在:tensorflow/python/ops/metrics_impl.py.

通过对给定值进行正态化计算平均相对误差.

该mean_relative_error函数创建两个局部变量,total和count,它们被用来计算的平均相对误差绝对值.该平均是通过weights加权,并最终被返回为mean_relative_error: 这是等幂操作,简单地使用count除total.

为了估计数据流上的度量,该函数创建一个update_op操作来更新这些变量并返回mean_reative_error.在内部,relative_errors操作将predictions和labels之间的差值的绝对值除以normalizer.然后update_op通过weights和relative_errors乘积的减少总和来递增total,并且它通过weights的减少总和来递增count.

如果weights是None,则权重默认为1,使用权重0来屏蔽值.

参数:

  • labels:与predictions具有相同形状的Tensor.
  • predictions:任意形状的Tensor.
  • normalizer:与predictions具有相同形状的Tensor.
  • weights:可选的Tensor,其秩为0或与labels具有相同秩,并且必须可广播到labels(即,所有维度必须为1或者与相应的labels维度相同).
  • metrics_collections:mean_relative_error应添加到的集合的可选列表.
  • updates_collections:update_op应添加到的集合的可选列表.
  • name:可选的variable_scope名称.

返回:

  • mean_relative_error:表示当前均值的Tensor,total除以count的值..
  • update_op:适当增加total和count变量,并且其值与mean_relative_error匹配的操作

可能引发的异常:

  • ValueError:如果predictions和labels有不匹配的形状,或者weights不是None,并且它的形状与predictions不匹配,或者如果metrics_collections或updates_collections中任意一个不是一个列表或元组.
  • RuntimeError:如果启用了急切执行.
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号