1 简介
在日常工作中,我们运行程序经常会用到「循环迭代」,假如这个执行时间很短,那倒也无所谓。但是有一些过程耗时蛮长的,给其加上「进度条」(progress bar),可以帮我们监控代码执行进度,以及过程出现异常的情况,非常实用。这里为大家介绍Python
中非常实用又风格迥异的两个进度条相关库——tqdm
与alive-progress
的主要用法。
2 tqdm常用方法
tqdm
是Python
中所有进度条相关库中最出名的,既然是最出名的,自然有它独到之处。
tqdm
不仅可以生成基础的可在终端中显示的进度条,还可以配合jupyter notebook
和jupyter lab
生成更加美观的网页「交互」部件形式的进度条,更是和pandas
强强联手,为pandas
中的一些操作提供专有的进度条功能。
下面我们来对tqdm
的主要功能进行介绍。
2.1 基础用法
因为是第三方库,首先需要利用pip install tqdm
或 conda install -c conda-forge tqdm
对其进行安装,安装完成后先来看看它最基本的用法:
利用tqdm.tqdm
,将for
循环过程中进行迭代的对象简单包裹,就实现了为循环过程添加进度条以及打印执行速度、已运行时间与预估剩余运行时间等实用信息的功能,同样也可用于「列表推导」:
而针对迭代对象是range()
的情况,tqdm
还提供了简化版的trange()
来代替tqdm(range())
:
其附带的参数desc
还可以帮助我们设置进度条的说明文字:
而如果想要在迭代过程中变更说明文字,还可以预先实例化进度条对象,在需要刷新说明文字的时候执行相应的程序:
但当迭代的对象长度一开始未知时,譬如对pandas
中的DataFrame.itertuples()
进行迭代,我们就只能对其执行速度等信息进行估计,但无法看到进度条递增情况,因为tqdm
不清楚迭代的终点如何:
2.2 配合jupyter notebook/jupyter lab的美观进度条
tqdm
对jupyter notebook
和jupyter lab
有着特殊的支持,且使用方法非常简单,只需要将原有的from tqdm import XXX
的相应功能导入格式修改为from tqdm.notebook import XXX
就可以了,以trange
为例:
2.3 配合pandas中的apply
tqdm
对pandas
中的apply()
过程提供了特殊的支持,因为pandas
中的apply()
本质上就是串行循环运算,你可以将pandas
中的任何apply
操作替换为progress_apply
,并且记住每个单独的progress_apply
前要先执行tqdm.pandas()
,就像下面的例子一样:
3 alive-progress常用方法
虽然与tqdm
一样都是为了给循环过程加上进度条而诞生的库,但alive-progress
相比tqdm
增加了更多花样繁多的动态效果,我们通过调用其专门提供的showtime()
函数可以查看所有可用的动态进度条样式:
同样类似地可以查看所有进度条样式:
使用起来也是非常简单,但与tqdm
用法区别很大,需要配合with
关键词,譬如下面我们使用到alive_progress
中的alive_bar
来生成动态进度条:
通过修改bar
参数来改变进度条的样式:
比较遗憾的是目前的alive-progress
只能在终端中运行,还没有为jupyter
开发更美观的交互式部件,但你可以在譬如网络爬虫等任务中使用它,效果也是很不错的。然后想学习python
的同学可以看一下教程。
python教程:https://www.w3cschool.cn/python/
python3基础微课:https://www.w3cschool.cn/minicourse/play/python3course